Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144434

RESUMO

Obesity associated with a Western diet such as a high-fat diet (HFD) is a known risk factor for inflammatory bowel disease (IBD) and colorectal cancer (CRC). In this study, we aimed to develop fecal microbiome data-based deep learning algorithms for the risk assessment of colorectal diseases. The effects of a HFD and a candidate food (Nypa fruticans, NF) on IBD and CRC risk reduction were also evaluated. Fecal microbiome data were obtained from 109 IBD patients, 111 CRC patients, and 395 healthy control (HC) subjects by 16S rDNA amplicon sequencing. IBD and CRC risk assessment prediction models were then constructed by deep learning algorithms. Dietary effects were evaluated based on fecal microbiome data from rats fed on a regular chow diet (RCD), HFD, and HFD plus ethanol extracts or water extracts of NF. There were significant differences in taxa when IBD and CRC were compared with HC. The diagnostic performance (area under curve, AUC) of the deep learning algorithm was 0.84 for IBD and 0.80 for CRC prediction. Based on the rat fecal microbiome data, IBD and CRC risks were increased in HFD-fed rats versus RCD-fed rats. Interestingly, in the HFD-induced obesity model, the IBD and CRC risk scores were significantly lowered by the administration of ethanol extracts of NF, but not by the administration of water extracts of NF. In conclusion, changes in the fecal microbiome of obesity by Western diet could be important risk factors for the development of IBD and CRC. The risk prediction model developed in this study could be used to evaluate dietary efficacy.

2.
Sci Rep ; 12(1): 4285, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277583

RESUMO

Although there is a growing interest in the role of gastric microbiome on the development of gastric cancer, the exact mechanism is largely unknown. We aimed to investigate the changes of gastric microbiome during gastric carcinogenesis, and to predict the functional potentials of the microbiome involved in the cancer development. The gastric microbiome was analyzed using gastric juice samples from 88 prospectively enrolled patients, who were classified into gastritis, gastric adenoma, or early/advanced gastric cancer group. Differences in microbial diversity and composition were analyzed with 16S rRNA gene profiling, using next-generation sequencing method. Metagenomic biomarkers were selected using logistic regression models, based on relative abundances at genus level. We used Tax4Fun to predict possible functional pathways of gastric microbiome involved in the carcinogenesis. The microbial diversity continuously decreased in its sequential process of gastric carcinogenesis, from gastritis to gastric cancer. The microbial composition was significantly different among the four groups of each disease status, as well as between the cancer group and non-cancer group. Gastritis group was differently enriched with genera Akkermansia and Lachnospiraceae NK4A136 Group, whereas the cancer group was enriched with Lactobacillus and Veillonella. Predictive analysis of the functional capacity of the microbiome suggested enrichment or depletion of several functional pathways related to carcinogenesis in the cancer group. There are significant changes in the diversity and composition of gastric microbiome during the gastric carcinogenesis process. Gastric cancer was characterized with microbial dysbiosis, along with functional changes potentially favoring carcinogenesis.


Assuntos
Gastrite , Microbioma Gastrointestinal , Neoplasias Gástricas , Carcinogênese , Disbiose , Microbioma Gastrointestinal/genética , Humanos , RNA Ribossômico 16S/genética
3.
Cancers (Basel) ; 13(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572913

RESUMO

Early detection is crucial for improving the prognosis of gastric cancer, but there are no non-invasive markers for the early diagnosis of gastric cancer in real clinical settings. Recently, bacteria-derived extracellular vesicles (EVs) emerged as new biomarker resources. We aimed to evaluate the microbial composition in gastric cancer using bacteria-derived EVs and to build a diagnostic prediction model for gastric cancer with the metagenome data. Stool, urine, and serum samples were prospectively collected from 453 subjects (gastric cancer, 181; control, 272). EV portions were extracted from the samples for metagenome analysis. Differences in microbial diversity and composition were analyzed with 16S rRNA gene profiling, using the next-generation sequencing method. Biomarkers were selected using logistic regression models based on relative abundances at the genus level. The microbial composition of healthy groups and gastric cancer patient groups was significantly different in all sample types. The compositional differences of various bacteria, based on relative abundances, were identified at the genus level. Among the diagnostic prediction models for gastric cancer, the urine-based model showed the highest performance when compared to that of stool or serum. We suggest that bacteria-derived EVs in urine can be used as novel metagenomic markers for the non-invasive diagnosis of gastric cancer by integrating the liquid biopsy method and metagenome analysis.

4.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925708

RESUMO

Human microbiota refers to living microorganisms which colonize our body and crucially contribute to the metabolism of nutrients and various physiologic functions. According to recently accumulated evidence, human microbiota dysbiosis in the genital tract or pelvic cavity could be involved in the pathogenesis and/or pathophysiology of endometriosis. We aimed to investigate whether the composition of microbiome is altered in the peritoneal fluid in women with endometriosis. We recruited 45 women with histological evidence of ovarian endometrioma and 45 surgical controls without endometriosis. Following the isolation of extracellular vesicles from peritoneal fluid samples from women with and without endometriosis, bacterial genomic DNA was sequenced using next-generation sequencing of the 16S rDNA V3-V4 regions. Diversity analysis showed significant differences in the microbial community at phylum, class, order, family, and genus levels between the two groups. The abundance of Acinetobacter, Pseudomonas, Streptococcus, and Enhydrobacter significantly increased while the abundance of Propionibacterium, Actinomyces, and Rothia significantly decreased in the endometriosis group compared with those in the control group (p < 0.05). These findings strongly suggest that microbiome composition is altered in the peritoneal environment in women with endometriosis. Further studies are necessary to verify whether dysbiosis itself can cause establishment and/or progression of endometriosis.


Assuntos
Líquido Ascítico/microbiologia , Endometriose/microbiologia , Vesículas Extracelulares/microbiologia , Adulto , Líquido Ascítico/patologia , Bactérias/genética , Estudos de Casos e Controles , DNA Bacteriano/genética , Disbiose/complicações , Endometriose/etiologia , Endometriose/metabolismo , Vesículas Extracelulares/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microbiota/genética , Microbiota/fisiologia , RNA Ribossômico 16S/genética
5.
PLoS One ; 8(10): e76520, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204633

RESUMO

Gut microbiota play an important part in the pathogenesis of mucosal inflammation, such as inflammatory bowel disease (IBD). However, owing to the complexity of the gut microbiota, our understanding of the roles of commensal and pathogenic bacteria in the maintenance of immune homeostasis in the gut is evolving only slowly. Here, we evaluated the role of gut microbiota and their secreting extracellular vesicles (EV) in the development of mucosal inflammation in the gut. Experimental IBD model was established by oral application of dextran sulfate sodium (DSS) to C57BL/6 mice. The composition of gut microbiota and bacteria-derived EV in stools was evaluated by metagenome sequencing using bacterial common primer of 16S rDNA. Metagenomics in the IBD mouse model showed that the change in stool EV composition was more drastic, compared to the change of bacterial composition. Oral DSS application decreased the composition of EV from Akkermansia muciniphila and Bacteroides acidifaciens in stools, whereas increased EV from TM7 phylum, especially from species DQ777900_s and AJ400239_s. In vitro pretreatment of A. muciniphila-derived EV ameliorated the production of a pro-inflammatory cytokine IL-6 from colon epithelial cells induced by Escherichia coli EV. Additionally, oral application of A. muciniphila EV also protected DSS-induced IBD phenotypes, such as body weight loss, colon length, and inflammatory cell infiltration of colon wall. Our data provides insight into the role of gut microbiota-derived EV in regulation of intestinal immunity and homeostasis, and A. muciniphila-derived EV have protective effects in the development of DSS-induced colitis.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Colite/microbiologia , Colite/prevenção & controle , Microbiota , Verrucomicrobia/metabolismo , Animais , Colite/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Feminino , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/prevenção & controle , Metagenoma , Camundongos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura
6.
Exp Mol Med ; 45: e6, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23306703

RESUMO

T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback.


Assuntos
Aspirina/uso terapêutico , Retroalimentação Fisiológica/efeitos dos fármacos , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Células Th17/imunologia , Animais , Aspirina/farmacologia , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/imunologia , Interferon gama/deficiência , Interferon gama/metabolismo , Interleucina-17/farmacologia , Interleucina-6/biossíntese , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/patologia , Células Th17/efeitos dos fármacos , Células Th17/patologia , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...